
389

0022-4715/03/1100-0389/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 113, Nos. 3/4, November 2003 (© 2003)

Condensation in the Zero Range Process:
Stationary and Dynamical Properties

Stefan Großkinsky,1 Gunter M. Schütz,2 and Herbert Spohn1

1 Zentrum Mathematik, Technische Universität München, 85747 Garching bei München,
Germany; e-mail: {stefang, spohn}@ma.tum.de
2 Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany; e-mail:

g.schuetz@fz-juelich.de

Received February 5, 2003; accepted June 2, 2003

The zero range process is of particular importance as a generic model for
domain wall dynamics of one-dimensional systems far from equilibrium. We
study this process in one dimension with rates which induce an effective attrac-
tion between particles. We rigorously prove that for the stationary probability
measure there is a background phase at some critical density and for large
system size essentially all excess particles accumulate at a single, randomly
located site. Using random walk arguments supported by Monte Carlo simula-
tions, we also study the dynamics of the clustering process with particular
attention to the difference between symmetric and asymmetric jump rates. For
the late stage of the clustering we derive an effective master equation, governing
the occupation number at clustering sites.

KEY WORDS: Zero range process; nonequilibrium phase transition; equiva-
lence of ensembles; relative entropy.

1. INTRODUCTION

Low dimensional stochastic particle systems far from equilibrium have a
much richer structure than their equilibrium counterparts. In particular,
even in one spatial dimension there is the possibility of a phase transition.
On the other hand, we do not have available general criteria which would
allow us to determine, for example, the phase diagram. A recent attempt in
this direction is a proposal by Kafri et al., (1) who study phase separation in
one dimension. Roughly speaking, they map the domain wall dynamics of
clusters to a zero range process, for which analytical tools are available.



Under suitable conditions, the clusters tend to grow. This coarsening is an
intriguing phenomenon already on the level of the zero range process itself,
and we will investigate it in much greater detail than available so far.

The zero range process is a stochastic particle system on the lattice Zd

where the jump rate g(k) of a given particle depends only on the occupa-
tion number k at its current position. This model was originally introduced
as a simple example of an interacting Markov process. (2) Various properties
have been established, among them the existence of the dynamics under
very general conditions, classification of invariant measures, and hydrody-
namic limits. (3–5) If g(k) is decreasing in k, then this induces an effective
attraction between particles, as first noted in refs. 6 and 7. As a result, there
is a critical background density and excess particles condense on a non-
extensive fraction of the volume.

Such a clustering phenomenon can be studied on two distinct levels.
Firstly, the phenomenon is present already in the steady state. Based on
some results for large deviations of independent, identically distributed
random variables (8, 9) and under general assumptions on g(k), we will prove
that for a typical steady state configuration there is a background phase at
some critical density. Any additional mass is concentrated at a single, ran-
domly located site. For the model introduced in ref. 7, we will analyze the
statistical properties of the background phase in detail. Secondly, there is
the dynamics of clustering with the steady state appearing only in the long
time limit. In a very recent preprint Godrèche (10) addresses this problem.
He assumes a uniform initial density and investigates numerically how the
probability distribution of the number of particles at some given site
evolves in time, with particular attention to the macroscopic component
of that distribution. In view of our static result we study the dynamics of
Evans’ model, (7) pursuing a somewhat different approach: During the
initial nucleation process random sites are selected, at which a macroscopic
number of particles accumulates. We investigate the effective dynamics of
the number of particles at such cluster sites, in particular how the smaller
occupation numbers become extinguished to the benefit of the larger ones.

Our contribution should be understood as a case study in the context
of phase transitions in one-dimensional systems far from equilibrium,
which has been a topic of major interest in the past decade (see refs. 11 and
12 and references therein). Of particular interest is the occurrence of phase
separation in systems with two conservation laws (see, e.g., refs. 13–15)
whose macroscopic behavior has only recently been examined to some
extent. (16, 17) Given the correspondence to the zero-range process our results
also provide new information on the stability of domain walls (shocks)
which separate macroscopic regions of different phases in two-component
systems. Domain wall stability already proved to be a key ingredient in the
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theory of boundary-induced phase transitions in systems with one conser-
vation law (18–20) and thus may shed light on boundary-induced spontaneous
symmetry breaking (21) in two-component systems.

To give a brief outline: in the following section we discuss the station-
ary measures for the zero range process and in Section 3 the two main
results on the equivalence of ensembles and the structure of the condensed
phase are established. In Sections 4 and 5 we study the condensation tran-
sition for the model introduced in ref. 7, first on the level of the stationary
measure, and secondly through the dynamics of the clustering.

2. ZERO RANGE PROCESS AND ITS INFINITE VOLUME

STATIONARY MEASURES

For notational simplicity we restrict ourselves to a description in one
space dimension, but our results on the equivalence of ensembles hold for
arbitrary dimension. Rather than defining the zero range process directly
on an infinite lattice (cf. refs. 3 and 5), we first consider a finite system,
compute the (unique) stationary measure and analyze it in the limit of
infinite system size.

Let us consider a zero range process on the one-dimensional lattice
LL={1,..., L} of L sites with periodic boundary conditions. Let gx ¥N be
the number of particles on site x ¥ LL, where N={0, 1, 2,...}. The state
space is given by WL=NLL and we denote a particle configuration by
g=(gx)x ¥ LL ¥ WL. At a given site x ¥ LL, the number gx of particles
decreases by one after an exponential waiting time with rate g(gx) and the
leaving particle jumps to site x+y with probability p(y). The jump prob-
abilities p: ZQ [0, 1] are normalized, ;y p(y)=1, p(0)=0, assumed to
be of finite range, p(y)=0 for |y| > R, and irreducible, p(1) > 0. For the
dynamics to be well defined in the limit LQ. and to be nondegenerate
the rate function g: NQ [0,.) has to satisfy

sup
k ¥N

|g(k+1)−g(k)| <., g(k) > g(0)=0 for all k > 0. (2.1)

The generator of the zero range process is then given by

(Lf)(g)=C
L

x=1
C
R

y=−R
g(gx) p(y)(f(gx, x+y)−f(g)), (2.2)

regarded as a linear operator on C(WL, R). We used the shorthand
gx, x+yz =gz−d(z, x)+d(z, ((x+y−1)mod L)+1) for all z ¥ LL, where
d(., .) denotes the Kronecker delta function. The process conserves the
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number of particles SL(g)=;L
x=1 gx, thereby dividing the configuration

space into the finite, invariant subsets WL, N={g ¥ WL |SL(g)=N} with
N ¥N. Restricted to C(WL, N, R) with L, N fixed, L is a finite dimensional
matrix and the process is well defined. However for L=. this is true only
for ‘‘reasonable’’ initial conditions and under the assumption (2.1), see
refs. 3 and 5.

The following results for the stationary measures are well known and
taken from refs. 2, 3, and 7. The zero range process (2.2) on WN, L is an
irreducible Markov jump process with the unique stationary measure

mN, L(g)=
1

Z(N, L)
D
L

x=1
W(gx) d(SL(g), N). (2.3)

The weightW is given by

W(k) :=D
k

i=1

1
g(i)

(2.4)

and the normalizing partition function is

Z(N, L)= C
g ¥ WL

D
L

x=1
W(gx) d(SL(g), N). (2.5)

Clearly (2.3) resembles a canonical ensemble in statistical mechanics.
Therefore, in the limit of large system size L, NQ. with fixed particle
density r=N/L, (2.3) is expected to be equivalent to a grand canonical
product measure, which is defined through

nLf (g)=D
L

x=1
nf(gx) with nf(k)=

1
Z(f)

W(k) fk, (2.6)

and where the fugacity f \ 0 is adjusted to fix the average density.
Let fc be the radius of convergence of the grand canonical (one site)

partition function

Z(f)=C
.

k=0
W(k) fk. (2.7)

The measure (2.6) is well defined for fugacities f ¥ [0, fc) and its average
particle density r(f) as a function of f is given by

r(f)=C
.

k=0
knf(k)=f

“ log Z(f)
“f

. (2.8)

392 Großkinsky et al.



The range of r is the interval [0, rc), with r(0)=0 and rc=limf q fc
r(f)

the critical density. fQ r(f) is strictly increasing and we denote the inverse
function on [0, rc) by f(r). If fc=., then rc=. (see ref. 4, Lemma 2.3.3),
whereas for fc <., both rc=. and rc <. are possible. In the second
case Z(fc) <. (see ref. 4, Lemma 2.3.3) and nfc is a well defined probability
measure with OgxPnfc

=rc. Thus we set

f(r)=˛ inverse of r(f), for r < rc
fc, for r \ rc

, (2.9)

where rc can be either finite or infinite, cf. Fig. 1 in Section 4. The reason
for this particular convention will become clear in the next section. In this
way we may regard the measure nf also as a function of r through nf(r).

The link between canonical and grand canonical measures is given
through the pointwise limit of the n-point marginal,

lim
LQ.

m[rL], Ln (k)=D
n

i=1
nf(r)(ki). (2.10)

Here [a] denotes the integer part of a ¥ R and for every n ¥N, x=
(x1,..., xn) ¥ L

n
L with xi ] xj for i ] j, k=(k1,..., kn) ¥Nn the n-point

marginal is defined as mN, Ln, x (k) :=m
N, L({gx1=k1,..., gxn=kn}). Since the

measure mN, L is permutation invariant (see (2.3)), the marginals do not
depend on the sites x individually, but only on their number n. For this
reason only n is specified in our notation.

A rigorous result on this equivalence is available in ref. 4, Appendix 2,
but it does not cover the supercritical case rc <. and N/L \ rc. It will be
discussed in Section 3, where particular attention is given to the statistical
properties of the excess density. If rc <., then nfc is well defined and by
necessity decays subexponentially, which will be explained in (3.12).
Examples with power-law decay are given in refs. 4 (Example 2.3.4) and 6.
In ref. 7 Evans studies the dependence on the power-law exponent in more
detail and introduces a generic model where rc can be either finite or infi-
nite, depending on a system parameter. Its stationary and dynamical
properties will be studied in detail in Sections 4 and 5.

The jump probabilities p do not influence the stationary measures, but
they play an important role for the relaxation dynamics, see Section 5. The
zero range process is reversible if and only if p is symmetric. The stationary
current is given by j=m(p)Og(gx)P, where m(p)=;R

y=−R yp(y) is the first
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moment of p, which for non-symmetric jump probabilities is generically
non-zero. The average jump rate OgP of the two ensembles is given by

Og(gx)PmN, L=
Z(N−1, L)
Z(N, L)

(canonical),

Og(gx)PnLf=C
.

k=0
g(k) nf(k)=f (grand-canonical).

(2.11)

Thus for m(p) > 0 the grand canonical current j(r)=m(p) f(r) is mono-
tone increasing in r, approaching its maximum value m(p) fc as rQ rc,
and correspondingly for m(p) < 0.

3. EQUIVALENCE OF SUPERCRITICAL MEASURES

We consider the zero range process with rc <. and supercritical
canonical measures with r=N/L > rc. The heuristic picture, developed in
refs. 6 and 7, is that most sites of the system are distributed according to nfc
with mean occupation number rc. For large L, the (r−rc) L excess par-
ticles presumably condense on a few sites. If so, locally one will observe the
grand-canonical ensemble with f=fc. This picture is made precise in

Theorem 1 (Equivalence of Ensembles). Let rQ f(r) be defined
as in (2.8) and (2.9). Then for every r ¥ [0,.) the nth marginal has the
pointwise limit

lim
LQ.

m[rL], Ln (k)=D
n

i=1
nf(r)(ki). (3.1)

The canonical partition functions converge as

lim
LQ.

1
L

log Z([rL], L)=log Z(f(r))−r log f(r). (3.2)

Proof. It is convenient to characterize the distance between the
canonical and grand-canonical measures through the relative entropy S.
For two arbitrary probability measures m, n on a countable set W it is
defined as

S(m | n)=˛ Cw ¥ W

m(w) log
m(w)
n(w)

, if m° n

., otherwise
(3.3)
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where m° n means that m is absolutely continuous w.r.t. n. It has the
properties (see, e.g., ref. 22)

S(m | n) \ 0, S(m | n)=0Z m(w)=n(w) for all w ¥ W. (3.4)

To prove (3.1) it is therefore enough to establish that

lim
LQ.

S(m[rL], Ln | nnf(r))=0 (3.5)

for every r ¥ [0,.).
We recall that SL(g)=;L

x=1 gx denotes the number of particles. By
definition (2.3) one has for a fixed g ¥ WL

mN, L(g)=
WL(g) d(SL(g), N)

Z(N, L)
, (3.6)

where WL denotes the product measure WL(g)=<L
x=1 W(gx). Thus, using

(3.3), it follows that for every f ¥ [0, fc]

S(mN, L | nLf )= C
g ¥ WL, N

mN, L(g) log
WL(g)

nLf (g) Z(N, L)
, (3.7)

since mN, L is absolutely continuous w.r.t. nLf . From (2.5) and (2.6) we
conclude that

nLf (g) Z(f)
L=WL(g) fN for g ¥ WL, N and

nLf ({SL=N}) Z(f)
L=Z(N, L) fN.

(3.8)

To simplify notation we use the shorthand nLf (A)=;g ¥ A n
L
f (g) for a

subset A of the configuration space and {g | SL(g)=N}={SL=N}.
Inserting in (3.7) this yields

S(mN, L | nLf )=−log nLf ({SL=N}). (3.9)

At this point we use the subadditivity of S, namely if two measures m, n
have marginals mi, ni, i=1, 2, then

S(m | n) \ S(m1 | n1)+S(m2 | n2). (3.10)
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Therefore for every n ¥ {1,..., L} and f ¥ [0, fc]

S(mN, Ln | nnf) [ −
1

[L/n]
log nLf ({SL=N}). (3.11)

The key point is to maximize nLf ({SL=N}) by appropriately adjusting
f=f(r) as defined in (2.9). In the subcritical case, r=N/L < rc, we have
f(r) < fc and nf(r) has exponential moments (see (2.6)). Then the variance
s2 of nf is finite and the limit distribution of (SL−(rL))/(s`L) is given
by the normal distribution N(0, 1) (cf. (4.11)). By the local limit theorem
(see, e.g., ref. 23) we get in this case nLf(r)({SL=[rL]}) 4 1/`L for
large L. For r=rc the decay of nfc is subexponential, since f=fc is the
radius of convergence of the partition function Z(f) in (2.7). Thus

lim
kQ.

1
k

log nfc (k)=0 (3.12)

and the second moment of nfc could be infinite, leading to a non-normal
limit distribution (cf. (4.12)). Since the first moment of nfc equals rc <.,
by the local limit theorem for non-normal limit distributions (see also
ref. 23) we get the lower bound nLfc ({SL=[rcL]}) N 1/L. The supercritical
case r > rc, where f(r)=fc, can be reduced to the critical one via

nLfc ({SL=[rL]})

\ nLfc ({gL=[rL]−[rc(L−1)], SL−1=[rc(L−1)]})

=nfc ([rL]−[rc(L−1)]) n
L−1
fc
({SL−1=[rc(L−1)]}). (3.13)

Both terms decay subexponentially, the first one using (3.12) and the
second one as in the critical case. Thus in all cases we have a subexponential
lower bound on nLf(r)({SL=[rL]}) and the limit (3.5) follows for all
r ¥ [0,.) from (3.11),

lim
LQ.

S(m[rL], Ln | nnf(r)) [ − lim
LQ.

1
[L/n]

log nLf(r)({SL=[rL]})=0. (3.14)

To establish (3.2) we use the second line of (3.8) and immediately get

1
L

log Z(N, L)−
1
L

log nLf ({SL=N})=log Z(f)−
N
L

log f, (3.15)
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for all N, L. With f=f(N/L) we can use the above estimates, so that the
second term on the left vanishes in the limit LQ. and the assertion (3.2)
follows. L

Theorem 1 ensures us that the volume fraction of the condensed phase
vanishes in the limit LQ.. In principle it could still contain an infinite
number of sites, and the question remains, how many condensed sites there
are in a typical configuration. The answer depends on the large-k behavior
of the critical distribution nfc (k). From (3.12) we know already that it
decays subexponentially. We will show that for a large class of such
subexponential distributions the excess particles condense on a single,
randomly located site.

Let C2 be the set of distributions nfc which have finite second moment
and for which the integrated tail nfc ({g1 \ k}) is heavier than exp[−ka] for
some a ¥ (0, 1/2). Cp denotes the set of distributions with power-law tail
nfc (k) 4 k

−b, b ¥ (2, 3], for which the second moment diverges. For a
detailed description and results on subexponential distributions we refer the
reader to refs. 9 and 24.

Theorem 2. Let nfc be in the class C2 2 Cp as defined above, with
first moment rc <.. Then for the sequence of the corresponding canonical
measures m[rL], L with r > rc one has

lim
LQ.

m[rL], L({ max
1 [ x [ L

gx \ [(r−rc) L]})=1. (3.16)

The probability that there is a site which contains at least (r−rc) L
particles converges to one in the thermodynamic limit. But the occupation
number cannot be substantially larger than (r−rc) L, since almost all sites
are distributed according to nfc , as proved in Theorem 1. Therefore all
excess particles are condensed on a single site in the limit LQ.. The proof
of Theorem 2 uses large deviation results on the asymptotic behavior of
nLfc ({SL \ rL}) for LQ., which we summarize in the following lemma
for our purpose.

Lemma. Let g1, g2,... be i.i.d. random variables with mean zero and
probability distribution P ¥ C2 2 Cp. Then with SL=;L

x=1 gx one has for
any r > 0

lim
LQ.

:PL({SL \ rL})
L P({g1 \ rL})

−1 :=0. (3.17)
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Proof of the Lemma. In the case P ¥ Cp see ref. 8 (Chapter 1,
Corollaries 1.1.1 to 1.1.3) and for distributions in C2 see ref. 9.

The interpretation of the lemma is that under a distribution in C2 2 Cp
the rare event {SL \ rL} in the limit LQ. is realized by the deviation of
a single (randomly positioned) site with probability one. Thus for
nfc ¥ C2 2 Cp this is also a typical configuration under the canonical
measure m[rL], L, since for r > rc the latter is basically given by the grand
canonical critical measure nfc under the condition {SL=[rL]}, cf. (3.19).
This argument will be made precise in the following.

Proof of Theorem 2. Obviously one has

m[rL], L({ max
1 [ x [ L

gx \ [(r−rc) L]}) [ 1 (3.18)

for all L ¥N. To find a lower bound that converges to 1 for LQ. we
apply the results of the lemma. We note that for all g ¥ WL, N it is

m[rL], L({ max
1 [ x [ L

gx \ [(r−rc) L]})

=nLfc ({ max
1 [ x [ L

gx \ [(r−rc) L]})/n
L
fc
({SL=[rL]}) (3.19)

cf. (3.6), and for LQ.

nLfc ({ max
1 [ x [ L

gx \ [(r−rc) L]})

=L nfc ({g1 \ [(r−rc) L]})(1+o(1)). (3.20)

Shifting the expectation value to zero via g −x=gx−rc, S
−

L :=;L
x=1 g

−

x and
using nLfc ({SL=[rL]}) [ n

L
fc
({SL \ [rL]}) we get from (3.19) and (3.20)

m[rL], L({ max
1 [ x [ L

gx \ [(r−rc) L]})

\
L nfc ({g

−

1 \ [(r−rc) L]})
nLfc ({S

−

L \ [(r−rc) L]})
(1+o(1)). (3.21)

By (3.17) the righthand side of (3.21) converges to 1 in the limit LQ. and
(3.16) is shown. L
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4. STATIONARY PROPERTIES NEAR CRITICALITY

In ref. 7 Evans studies the zero range process with rates

gb(k)=h(k)(1+b/k), (4.1)

where h(0)=0 and h(k)=1 for k > 0. He observes that for b > 2 the criti-
cal density rc <.. Our goal here is to study the properties of the invariant
measures for any b > 0. The stationary weight for the zero range process
with rates gb is given by

W(k)=D
k

i=1

1
1+b/i

=
k!

(1+b)k
=
k! C(1+b)
C(1+b+k)

, (4.2)

where (a)k=<k−1
i=0 (a+i) denotes the Pochhammer symbol, a ¥ R, k ¥N.

The grand canonical partition function of (2.7) is

Z(f)=2F1(1, 1; 1+b; f) :=C
.

k=0

(1)k (1)k
(1+b)k

fk

k!
. (4.3)

Its radius of convergence is fc=1, and 2F1 denotes the hypergeometric
function, (25) which has the expansion

2F1(k, k; k+b; f)=
C(k+b) C(k−b)

C(k)2
(1−f)b−k [1+O(1−f)]

+
C(k+b) C(b−k)

C(b)2
51+ k2

1+k−b
(1−f)+O(1−f)26 .

(4.4)

The particle density (2.8) is given by

r(f)=
f2F1(2, 2; 2+b; f)

(1+b) 2F1(1, 1; 1+b; f)
for f < 1. (4.5)

In the following we analyze the grand-canonical single site measure nf
of (2.6) in the limit f q 1, i.e., near the critical density rc. For rc <. the
limit n1 is well defined, as discussed in Section 2, and according to Theorem 1
it is the distribution of the non-condensed phase for supercritical systems
with N/L=r > rc. As long as f < 1 the distribution nf has exponential
moments. For f=1 the exponential tail of nf disappears and the tail
becomes proportional to the weight W(k) as defined in (4.2). Using

Condensation in the Zero Range Process 399



Stirling’s formula, the behavior of the weight for large k is given by the
power-law W(k) 4 C(1+b) k−b. These distributions have moments up to
order b−1. Thus different scenarios are encountered as b is varied.

The Case 0 < b [ 1. For b < 1 the leading order in the asymptotic
expansion for Z and r is given by

Z(f) 4 C(1+b) C(1−b)(1−f)b−1Q.,

r(f) 4
f

(1+b)2 (1−b)
(1−f)−1Q rc=.,

(4.6)

as f q 1. For every density, the stationary distribution in the limit LQ. is
given by the grand-canonical measure nf (see Fig. 1(a)). The probability to
have a fixed number of particles on a given site vanishes with increasing
density, as is shown for the example of an empty site in Fig. 1(b). Thus in
the limit there is an infinite number of particles on every site with proba-
bility one, as it should be for homogeneous systems with rQ..

For b=1 this picture does not change qualitatively, except for the
logarithmic corrections

Z(f)=−
log(1−f)
f

Q.,

r(f)=
f

(f−1) log(1−f)
−1Q rc=.,

(4.7)

as f q 1.

Fig. 1. (a) Fugacity f as a function of the particle density for several values of b. Equiva-
lently, current j as a function of r up to the scale factor m(p) (see (2.11)). (b) Probability of an
empty site, nf(r)(0), as a function of the density r for several values of b.
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The Case 1 < b [ 2. For 1 < b < 2 the leading order terms change,
and

Z(f) 4
b
b−1
+C(1+b) C(1−b)(1−f)b−1Q Z(1)=

b
b−1

,

r(f) 4 f(b−1) C(b) C(2−b)(1−f)b−2Q rc=.,

(4.8)

as f q 1. As before, for b=2 the first order terms have logarithmic correc-
tions but the qualitative behavior does not change. In particular, rc=.
and the stationary distribution is described by the grand-canonical
ensemble for every density r (see Fig. 1(a)).

However, somewhat surprisingly, the character of this distribution for
large r differs from the case b [ 1. Since Z(1) <., n1 is well defined and
there is a non-zero probability to have a fixed number of particles at a
given site,

n1(0)=
1
Z(1)

=
b−1
b
,

n1(k)=
W(k)
Z(1)

% C(b)(b−1) k−b for large k.

(4.9)

For example the probability of an empty site, given by nf(r)(0)=
1/Z(f(r)), decreases monotonically with f, i.e., with increasing density r.
In contrast to the case b [ 1, it does not vanish in the limit rQ.,
however, it reaches the non-zero value n1(0)=(b−1)/b (see Fig. 1(b)). So
no matter how large the density, the fraction of empty sites in a typical
configuration is always greater than (b−1)/b.

Distributions with power-law tails are well studied (see, e.g., ref. 26
and references therein). A typical configuration for this stationary distri-
bution, i.e., a set of L i.i.d. random variables gx drawn from n1, is known to
have a hierarchical structure. The nth largest value of the set {g1,..., gL}
scales as (C(b−1) L/n)1/(b−1), which holds for every b > 1. In our particu-
lar case 1 < b [ 2, this means that the particle number SL also scales as
L1/(b−1) and thus grows faster than the number of summands L. Therefore
the particle density SL/L diverges as L (2−b)/(b−1) and the highest occupied
site contains a nonzero fraction of the particles in the system. This hierar-
chical structure of typical configurations can be understood as a precursor
for the condensation phenomenon to be discussed in the next part.
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The Case b > 2. In this case b is large enough so that besides the
normalization also the first moment of the grand canonical distribution
converges in the limit f q 1:

Z(f) 4
b
b−1

−
b

(b−1)(b−2)
(1−f)Q Z(1)=

b
b−1

,

r(f) 4
1
b−2
+f(b−1) C(b) C(2−b)(1−f)b−2Q rc=

1
b−2

,

(4.10)

as f q 1. We note that for b > 3 also the second moment s2 of the distribu-
tion n1 exists and the number of particles satisfies the usual central limit
theorem

lim
LQ.

nL1 1t1 [
SL−rcL

s`L
[ t2 2=F

t2

t1

G(t) dt, (4.11)

where G denotes the Gaussian probability density with zero mean and unit
variance. The density for b > 3 is of order r(f)=1/(b−2)+O(1−f) and
its first derivative is finite at f=1 and given by rŒ(1)=(b−1)2/
((b−3)2 (b−2)2) (see Fig. 1(a)).

As explained already in Section 3, the most occupied site contains of
order L1/(b−1) particles, and for b < 3 this fluctuation is larger than `L.
Therefore the scaling limit leads to a self-similar distribution, which is
given by the completely asymmetric Lévy distribution L(b−1) (for details see
ref. 26 or 23),

lim
LQ.

nL1 1t1 [
SL−rcL

(b C(b−1) L)1/(b−1)
[ t2 2=F

t2

t1

L(b−1)(t) dt. (4.12)

With (4.10) we have rŒ(1)=. for b < 3, leading to a differentiable func-
tion f(r), as shown in Fig. 1(a).

5. DYNAMICS OF THE CONDENSATION

The stationary distribution investigated so far carries no information
on the kinetics of the condensation. A natural set-up is to start with par-
ticles uniformly distributed at the supercritical density r > rc. In the
beginning the excess particles condense at a few random sites. Such a site
containing many excess particles is called a cluster site. Thus there are
several clusters which are essentially immobile as will be discussed below.
On the remaining sites, called bulk sites, the distribution relaxes to n1. With
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increasing time the larger clusters will gain particles at the expense of the
smaller ones, causing some of the clusters to disappear. Eventually only a
single cluster containing all excess particles survives, which is typical for the
stationary distribution, as has been discussed already in Section 3.

In the following we will study the kinetics of condensation and its
dependence on system parameters in detail. Compared to Section 4 the
jump probabilities play an important role for the dynamical properties of
the system. We will focus on nearest-neighbor jumps which are either
totally asymmetric, i.e., particles only jump to the right with pa(y)=
d(1, y), or symmetric, i.e., ps(y)=(d(−1, y)+d(1, y))/2. In contrast to
previous sections we are not able to rigorously prove our statements, but
use heuristic considerations which are corroborated through comparison
with simulation data.

5.1. Cluster Formation

To distinguish cluster and bulk sites, we define a site x ¥ {1,..., L} to
be a cluster if it contains a macroscopic fraction of the excess particles
gx > a(r−rc) L. The prefactor a ¥ (0, 1] is rather arbitrary but for simula-
tions it is important that the clusters are well separated from the bulk fluc-
tuations, which are of order (C(b−1) L)1/(b−1). Since fluctuations grow
only sublinearly with L this separation is clearly guaranteed in the limit
LQ., and for finite systems it holds for sufficiently large L depending on
a and r. In our simulations we choose a=1/40, requiring system sizes of
about 200 sites minimum for the values of r and b considered. Let n(t) be
the number of cluster sites at time t and mi(t), i=1,..., n(t) be the size of
the ith largest cluster, i.e., m1(t) \ · · · \ mn(t)(t). These quantities depend
also on the system parameters b, L, and r.

By definition a typical cluster has a size of order a(r−rc) L and so
there are of the order of 1/a cluster sites. The time scale for the formation
of such clusters is very roughly estimated as follows: O(L) particles have to
move a distance of order L to form the cluster. So in the asymmetric case
the time scale for cluster formation is O(L2). The dependence on r and b is
not so obvious, since the bulk has not yet relaxed to n1 and the speed of
particles still changes. In the symmetric case the time scale is O(L3), since
the particles diffuse without a drift.

In Fig. 2(a), in the totally asymmetric case, we plot the average
number of particles in the condensed phase, normalized by the number of
excess particles,

f(t)=
;n(t)
i=1 mi(t)
(r−rc) L

. (5.1)
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Fig. 2. (a) Average fraction Of(t)P of particles in the condensed phase, (b) average number
of cluster sites On(t)P. Both are plotted as a function of time in units ya=(r−rc)2L2/b
(cf. (5.6)) for different values of r, b, and L in the totally asymmetric case. Symbols: for b=4,
r=5, L=320(j), 640(g), 1280(i), 2560(×), for b=4, r=3, L=1280 (a), for b=5,
r=5, L=2560 (I).

The time axis is scaled proportional to ya=(r−rc)2 L2/b (cf. Section 5.2),
since this choice gives the best data collapse when r and b are varied. On
this time scale most excess particles become trapped in a cluster and the
bulk relaxes to n1. In Fig. 2(b) the average number of clusters is plotted as
a function of time. The number of clusters grows for a short time and then
starts decreasing again.

5.2. Coarsening

Once the bulk has relaxed to n1, each bulk site loses particles at the
average rate OgbPn1=1. In the asymmetric case this results in a particle
current j=f=1 (see (2.11) and Fig. 1). On top of that, excess particles are
exchanged between clusters. The bulk can be seen as a homogeneous
medium where the excess particles move, and the cluster sites as boundaries
where they enter and exit. A cluster of size m > 0 loses excess particles with
rate g(m)−1=b/m and gains particles from neighboring clusters. Since
this rate decreases with increasing cluster size, smaller clusters lose particles
to the larger ones.

To quantitatively describe this coarsening process we study the nor-
malized mean cluster size m̄(t)=f(t)/n(t) as a function of time for large
system sizes L. The ensemble average of this quantity (denoted by O · · ·P) is
expected to grow according to a scaling law

Om̄(t)P ’ tb, (5.2)

with a scaling exponent b. (27) To estimate this exponent we notice that the
time scale for the coarsening process is determined by two factors: Firstly,
the rate at which excess particles leave a cluster of size m and enter the
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bulk. Secondly, the typical time of such a particle to reach the neighboring
cluster. The mobility of excess particles in the bulk is characterized by the
average exit rate from an occupied site,

Og(k) | k > 0Pn1=C
.

k=1
g(k)

n1(k)
n1(k ] 0)

=
Og(k)Pn1
1− n1(0)

=11−b−1
b
2−1=b, (5.3)

as follows from (2.11) and (4.9). The excess particles perform a random
walk in the bulk, which is either biased or unbiased, depending on the first
moment of the jump probabilities. The time it takes to reach the next
cluster at a distance of order O(L/n)=O(m/(r−rc)) is given by the mean
first passage time for a random walk. (28) In the following we distinguish
between asymmetric and symmetric jump probabilities, to estimate the time
scale for a particle to leave a cluster and the one for reaching the neighbor-
ing cluster.

In the totally asymmetric case excess particles leave a cluster of size m
with rate b/m and move towards the right neighboring cluster without
returning, so the time to lose one particle scales like O(m/b). Since the
mean first passage time of a biased random walk is proportional to the
distance, this particle spends a time O(m/(b(r−rc))) in the bulk, because
b is the speed of the particle. Thus the typical times for exiting a cluster
and entering the next neighbor are of the same order in L and there are
O(1/(r−rc)) excess particles in the bulk. The coarsening time scale,
determined by the typical time for a cluster to lose all m particles, is thus
proportional to

ta(m) :=
m2

b
, i.e., ba=1/2. (5.4)

So for the asymmetric case the mean cluster size is predicted to grow like
Om̄(t)P ’ (bt)1/2.

In the case of symmetric jump probabilities ps, excess particles perform
an unbiased random walk in the bulk with diffusion constant b. Thus the
mean first passage time to reach the next cluster is proportional to the
square of the distance, i.e., O(m2/(b (r−rc)2)). In contrast to the asym-
metric case, it is very likely that particles return to the cluster they left. The
probability that they do not return but reach the neighboring cluster, which
is the relevant event for coarsening, is inverse proportional to the diffusion
distance, i.e., O((r−rc)/m). So the typical time of a particle to leave a
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cluster is O(m2/(b(r−rc))) and as before there are O(1/(r−rc)) excess
particles in the bulk. The coarsening time scale is therefore proportional to

ts(m) :=ta(m)
m

(r−rc)
=

m3

b(r−rc)
, i.e., bs=1/3. (5.5)

Thus the mean cluster size is predicted to grow like Om̄(t)P ’

((r−rc) bt)1/3.
In general, the time scale for the coarsening regime is determined by

the largest clusters with size O((r−rc) L) and is thus of order

ya :=ta((r−rc) L)=(r−rc)2 L2/b

ys :=ts((r−rc) L)=(r−rc)2 L3/b
(5.6)

for asymmetric resp. symmetric jump probabilities. The growth exponents
for the two cases are confirmed by simulations and shown in Fig. 3(a) for
the totally asymmetric and 3(b) for the symmetric jump probabilities.
Using the time scale ya resp. ys and normalizing Om̄P by the number of
excess particles (r−rc) L the data for different system sizes collapse. The
measured growth exponents from these data are

ba=0.514±0.005 and bs=0.334±0.004, (5.7)

which agree with the above predictions. Independently from us, these
exponents have been obtained in ref. 10 by numerical simulations.

Fig. 3. Double-logarithmic plot of mean cluster size as a function of time. Data collapse is
achieved by using the appropriate time scales ya, ys given in (5.6), and dividing the cluster size
by the number of excess particles (r−rc) L. The straight line indicates the predicted slope,
(a) b=1/2 in the asymmetric case, (b) b=1/3 in the symmetric case. Symbols: (a) b=4, r=5
and L=320(j), 640(g), 1280(i); (b) b=4, r=3, and L=160(j), 320(g), 640(i).
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Note that the clusters coarsen on the same time scale as they nucleate.
However, looking at the number of time steps in Figs. 2 and 3, the time it
takes to nucleate clusters is by a factor of 10 shorter than the coarsening
regime.

5.3. Saturation

Eventually all clusters except for two will have disappeared and finite
size effects become dominant. The scaling law (5.2) is no longer valid in
this regime, since the mean cluster size m̄ saturates towards its limiting
value. The two clusters exchange particles until one of them vanishes and
the system has reached its stationary state where all excess particles are
concentrated at a single cluster site. In Fig. 4 we plot the average size of the
three largest clusters Omi(t)P, i=1, 2, 3 normalized by (r−rc) L. Note
that the coarsening regime ends at latest when the third largest cluster has
disappeared, and thus takes only about a tenth of the total equilibration
time. In the following, we focus on the totally asymmetric jump probabil-
ities, but the symmetric choice would lead to an effective evolution equa-
tion of the same form.

Let M=m1+m2 be the total number of particles at the two largest
cluster sites. On the time scale tg=t/((r−rc) L/b) the two clusters
exchange single particles with effective rates (r−rc) L/mi, i=1, 2 (see
discussion in Section 5.2). The fluctuations ofM on this time scale are only
O(1). Thus it isM=(r−rc) L+O(1), since the bulk is relaxed to n1 and all
other clusters have disappeared. Let q(m, tg) be the probability of having

Fig. 4. Average size of the three largest clusters Omi(t)P, i=1, 2, 3 as a function of time in
the totally asymmetric case (a) and the symmetric case (b). Data collapse is achieved by using
the appropriate time scales ya, ys given in (5.6), and dividing the cluster size by the number of
excess particles (r−rc) L. Symbols: (a) b=4, r=20, and L=80(j), 160(g), r=40, and
L=80(i), 160(×). (b) b=4, r=20, and L=40(j), 80(g), r=40, and L=40(i),
80(×).
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m=0,..., M particles at one cluster site and M−m at the other one. The
dynamics is then governed by the effective master equation

“

“tg
q(m, tg)=−q(m, tg) 5 h(m)

m/M
+
h(M−m)
1−m/M
6

+q(m−1, tg)
h(m)

1−(m−1)/M
+q(m+1, tg)

h(M−m)
(m+1)/M

. (5.8)

The exchange rates on the right hand side only depend on the rescaled
variable m/M and not on the system parameters r, L, and b. For largeM,
m/M varies on the time scale tg/M 4 t/((r−rc)2 L2/b), confirming that
ya (5.6) is the appropriate time scale for the two-cluster situation. Therefore
the plots in Fig. 4 are independent of the system parameters. However,
in the following discussion we stick to the time scale tg and the discrete
variable m.

For any initial condition the solution of (5.8) tends to the inverse
binomial distribution qg(m) ’ 1/(Mm). It is symmetric around m=M/2 and
for small m we have qg(m)=O(M−m). Thus the two extreme occupation
numbers m=0 resp. m=M are the most probable ones and in the limit
LQ. both have probability 1/2, consistent with the results of Section 3.
For m=aM, a ¥ (0, 1) it is qg(m)=O(`M(aa(1−a)1−a)M) using Stirling’s
formula. Thus, in the stationary state, the typical time for a macroscopic
fluctuation of the cluster size diverges exponentially with the system size L.

To study the relaxation dynamics, we write (5.8) in the canonical form,
using the discrete derivative Nm f(m) :=f(m+1)−f(m),

“

“tg
q(m, tg)=−Nm(a(m) q(m, tg))+N2m(d(m) q(m, t

g))

a(m)=
1

(1−m/M)
−
M
m
=

2m/M−1
m/M(1−m/M)

d(m)=
1
2
1 1
(1−m/M)

+
M
m
2= 1
2m/M(1−m/M)

. (5.9)

For ease of notation, we take 0 < m <M and ignore the boundary terms.
Note that (5.9) is symmetric around m=M/2. It describes diffusive motion
in a double well potential with drift a(m) and diffusion coefficient d(m),
with the slightly unusual feature that the minima of the potential are
located close to the boundaries at m=1 and m=M−1.
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The master equation must be supplied with a suitable initial condition
q(m, 0), which, since resulting from a complex coarsening process, is not
readily available. A crude estimate can be found by noting that q(m, 0) is
roughly proportional to the lifetime of the occupation number m. It is
determined by the inverse exit rate for m taken from Equation (5.8), and
thus we expect q(m, 0) % 6m/M(1−m/M). This is a symmetric single
hump distribution with mean M/2 and standard deviation M/(2`5 ) %
0.22M. Comparing with the simulation data at the time when the third
largest cluster has just disappeared, m3(t)/M < 0.01, we indeed find a
single hump distribution with mean M/2 and standard deviation 0.166M.
When solving Eq. (5.9) with this initial distribution, the expectation of the
larger cluster size, given by 1/2+O|m/M−1/2|Pq(m, t), is indistinguishable
from Om1(t)P in Fig. 4. Note that, except for the time scales, Figs. 4(a) and
4(b) are almost identical, confirming that the effective master equation for
the symmetric case is of the same form as (5.8).
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